40 research outputs found

    Belyi's theorems in positive characteristic

    Get PDF
    There are two types of Belyi’s Theorem for curves deïŹned over ïŹnite ïŹelds of characteristic p, namely the Wild and the Tame p-Belyi Theorems. In this paper, we discuss them in the language of function ïŹelds. In particular, we provide a constructive proof for the existence of a pseudo-tame element introduced in [13], which leads to a self-contained proof for the Tame 2-Belyi Theorem. Moreover, we provide uniïŹed and simple proofs for Belyi Theorems unlike the known ones that use technical results from Algebraic Geometry

    Idempotent and p-potent quadratic functions: distribution of nonlinearity and co-dimension

    Get PDF
    The Walsh transform QˆQ^ of a quadratic function Q:Fpn→FpQ:Fpn→Fp satisfies |Qˆ(b)|∈{0,pn+s2}|Q^(b)|∈{0,pn+s2} for all b∈Fpnb∈Fpn , where 0≀s≀n−10≀s≀n−1 is an integer depending on Q. In this article, we study the following three classes of quadratic functions of wide interest. The class C1C1 is defined for arbitrary n as C1={Q(x)=Trn(∑⌊(n−1)/2⌋i=1aix2i+1):ai∈F2}C1={Q(x)=Trn(∑i=1⌊(n−1)/2⌋aix2i+1):ai∈F2} , and the larger class C2C2 is defined for even n as C2={Q(x)=Trn(∑(n/2)−1i=1aix2i+1)+Trn/2(an/2x2n/2+1):ai∈F2}C2={Q(x)=Trn(∑i=1(n/2)−1aix2i+1)+Trn/2(an/2x2n/2+1):ai∈F2} . For an odd prime p, the subclass DD of all p-ary quadratic functions is defined as D={Q(x)=Trn(∑⌊n/2⌋i=0aixpi+1):ai∈Fp}D={Q(x)=Trn(∑i=0⌊n/2⌋aixpi+1):ai∈Fp} . We determine the generating function for the distribution of the parameter s for C1,C2C1,C2 and DD . As a consequence we completely describe the distribution of the nonlinearity for the rotation symmetric quadratic Boolean functions, and in the case p>2p>2 , the distribution of the co-dimension for the rotation symmetric quadratic p-ary functions, which have been attracting considerable attention recently. Our results also facilitate obtaining closed formulas for the number of such quadratic functions with prescribed s for small values of s, and hence extend earlier results on this topic. We also present the complete weight distribution of the subcodes of the second order Reed–Muller codes corresponding to C1C1 and C2C2 in terms of a generating function

    On the nonlinearity of idempotent quadratic functions and the weight distribution of subcodes of Reed-Muller codes

    Get PDF
    International audienceThe Walsh transform \hat{Q} of a quadratic function Q : F2^n → F2 satisfies |\hat{Q(b)}| ∈ {0, 2 n+s 2 } for all b ∈ F_{2^n} , where 0 ≀ s ≀ n − 1 is an integer depending on Q. In this article, we investigate two classes of such quadratic Boolean functions which attracted a lot of research interest. For arbitrary integers n we determine the distribution of the parameter s for both of the classes, C1 = {Q(x) = Tr_n(\sum^{(n−1)/2}_{ i=1} a_ix^{2^i +1}) : a_i ∈ F2}, and the larger class C2, defined for even n as C2 = {Q(x) = Tr_n(^{(n/2)−1}_ { i=1} a_ix^{2^i +1}) + Tr_n/2 (a_{n/2} x^{2^n/2 +1}) : a_i ∈ F2}. Our results have two main consequences. We obtain the distribution of the non-linearity for the rotation symmetric quadratic Boolean functions, which have been attracting considerable attention recently. We also present the complete weight distribution of the corresponding subcodes of the second order Reed-Muller codes

    A new tower with good p-rank meeting Zink’s bound

    Get PDF
    corecore